
pytest_httpserver Documentation
Release 0.3.5

Zsolt Cserna

Aug 05, 2020

Contents

1 Example 3
1.1 User’s Guide . 3
1.2 API documentation . 5
1.3 Release Notes . 12

Python Module Index 15

Index 17

i

ii

pytest_httpserver Documentation, Release 0.3.5

pytest-httpserver is a python package which allows you to start a real HTTP server for your tests. The server can be
configured programmatically to how to respond to requests.

The aim of this project is to provide an easy to use API to start the server, configure the request handlers and then shut
it down gracefully. All of these without touching a configuration file or dealing with daemons.

As the HTTP server is spawned in a different thread and listening on a TCP port, you can use any HTTP client. This
library also helps you migrating to a different HTTP client library without the need to re-write any test for your client
application.

This library can be used with pytest in the most convenient way but if you prefer to use other test frameworks, you can
still use it with the context API or by writing a wrapper for it.

Contents 1

pytest_httpserver Documentation, Release 0.3.5

2 Contents

CHAPTER 1

Example

import requests

def test_json_client(httpserver: HTTPServer):
httpserver.expect_request("/foobar").respond_with_json({"foo": "bar"})
assert requests.get(httpserver.url_for("/foobar")).json() == {'foo': 'bar'}

For further details, please read the User’s Guide or the API documentation.

1.1 User’s Guide

1.1.1 Starting and stopping

The server can be started by instatiating it and then calling the pytest_httpserver.HTTPServer.start()
method. This will start the server in a separate thread, so you will need to make sure that the pytest_httpserver.
HTTPServer.stop() method is called before your code exits.

When using the pytest plugin, the server is started at the first usage of the server and it will remain running for the
whole test suite. For each test function, a clear http server will be used to avoid crosstalk.

A free TCP port needs to be specified when instantiating the server. Setting 0 as the port number will select a free
(ephemeral) TCP port which is guaranteed to be free. This is the default behavior.

Specifying the bind host and port can be done in several ways:

• Setting PYTEST_HTTPSERVER_HOST and PYTEST_HTTPSERVER_PORT will change the bind host and
bind port, respectively.

• If pytest plugin is not used, the DEFAULT_LISTEN_HOST and DEFAULT_LISTEN_PORT class attributes
can be set on the HTTPServer class.

• bind host and port can be specified for the constructor of the pytest_httpserver.server.
HTTPServer class.

• Overriding the httpserver_listen_address fixture in pytest.

3

pytest_httpserver Documentation, Release 0.3.5

1.1.2 Configuring

By configuring the server means registering handlers for specific requests. Once a request matches with the configu-
ration the specified response handler is fired and the reponse is served.

Requests

When registering a pytest_httpserver.server.RequestMatcher, it can use various parts of the HTTP
request to be matched: URI, method, data, headers, and query string can be specified.

The following can be matched:

• uri: a string, a regexp or an pytest_httpserver.server.URIPattern object

• method: GET/POST/. . . , specified as string

• data: a string or bytes. It is possible to match with arbitrary byte data.

• headers: a str-str dictionary or a pytest_httpserver.server.HeaderValueMatcher object which
matches each header with its own provided callable

• query_string: a string, bytes or a dict specifying the key-value pairs of the query string

pytest_httpserver.server.HTTPServer also determines how these matchers are looked up and what their
lifetime is. You can register handlers which handle any amount of requests, but you can also register one-shot handlers
which only handle one request and then they disappear.

Also, there’s ordered handlers which also specify the order of the requests to be handled. Not matching the order of
their registration, the server will refuse to serve any further requests.

With all of these, you can create a server with very permissive to very strict request handling.

Responses

Once the request is matched with one of the matchers, the handler gets fired, which can return a static response or you
can create a function which can return a dynamic response. When dealing with static responses you can determine
all parts of the http response (status, headers, content, etc), and you can also specify a JSON-serializable object to be
returned as a json.

1.1.3 Waiting for test completion or errors

It is possible to wait until all oneshot and ordered handlers are exhausted or any error happened. This is pro-
vided by a context manager which waits until one of these events occured. This can be further customized by
pytest_httpserver.server.WaitingSettings object to raise or not raise assertion.

1.1.4 Debugging errors while testing

When the tests are running against the server and no matcher can be found for the given request, the server
replies with HTTP status 500, and a short error text. This is not very helpful in most cases so if you want
to check what is the situation, you should call pytest_httpserver.HTTPServer.format_matchers()
or pytest_httpserver.HTTPServer.check_assertions() methods. The first one returns a human-
readable string representation of the matchers registered. The second one raises AssertionError with the errors hap-
pened during the testing in the server.

Also there’s a pytest_httpserver.HTTPServer.log attribute which contains the request-reponse object
pairs what the server handled.

4 Chapter 1. Example

pytest_httpserver Documentation, Release 0.3.5

1.2 API documentation

1.2.1 pytest_httpserver

This is package provides the main API for the pytest_httpserver package.

HTTPServer

class pytest_httpserver.HTTPServer(host=’localhost’, port=0, ssl_context:
Optional[ssl.SSLContext] = None,
default_waiting_settings: Op-
tional[pytest_httpserver.httpserver.WaitingSettings]
= None)

Server instance which manages handlers to serve pre-defined requests.

Parameters

• host – the host or IP where the server will listen

• port – the TCP port where the server will listen

• ssl_context – the ssl context object to use for https connections

• default_waiting_settings – the waiting settings object to use as default
settings for wait() context manager

log
Attribute containing the list of two-element tuples. Each tuple contains Request and
Response object which represents the incoming request and the outgoing response which
happened during the lifetime of the server.

add_assertion(obj)
Add a new assertion

Assertions can be added here, and when check_assertions() is called, it will raise As-
sertionError for pytest with the object specified here.

Parameters obj – An object which will be passed to AssertionError.

application(request: werkzeug.wrappers.request.Request)
Entry point of werkzeug.

This method is called for each request, and it then calls the undecorated dispatch() method
to serve the request.

Parameters request – the request object from the werkzeug library
Returns the response object what the dispatch returned

check_assertions()
Raise AssertionError when at least one assertion added

The first assertion added by add_assertion() will be raised and it will be removed from
the list.

This method can be useful to get some insights into the errors happened in the sever, and to
have a proper error reporting in pytest.

clear()
Clears and resets the state attributes of the object.

This method is useful when the object needs to be re-used but stopping the server is not feasible.

1.2. API documentation 5

pytest_httpserver Documentation, Release 0.3.5

clear_all_handlers()
Clears all types of the handlers (ordered, oneshot, permanent)

clear_assertions()
Clears the list of assertions

clear_log()
Clears the list of log entries

create_matcher(*args, **kwargs)→ pytest_httpserver.httpserver.RequestMatcher
Creates a RequestMatcher instance with the specified parameters.

This method can be overridden if you want to use your own matcher.

dispatch(request: werkzeug.wrappers.request.Request) →
werkzeug.wrappers.response.Response

Dispatch a request to the appropriate request handler.

This method tries to find the request handler whose matcher matches the request, and then calls
it in order to serve the request.

First, the request is checked for the ordered matchers. If there’s an ordered matcher, it must
match the request, otherwise the server will be put into a permanent failure mode in which it
makes all request failed - this is the intended way of working of ordered matchers.

Then oneshot handlers, and the permanent handlers are looked up.
Parameters request – the request object from the werkzeug library
Returns the response object what the handler responded, or a response which contains

the error

expect_oneshot_request(uri: Union[str, pytest_httpserver.httpserver.URIPattern,
Pattern[str]], method: str = ’__ALL’, data:
Union[str, bytes, None] = None, data_encoding:
str = ’utf-8’, headers: Optional[Mapping[str,
str]] = None, query_string: Union[None,
pytest_httpserver.httpserver.QueryMatcher, str, bytes,
Mapping[KT, VT_co]] = None, header_value_matcher: Op-
tional[pytest_httpserver.httpserver.HeaderValueMatcher] =
None)→ pytest_httpserver.httpserver.RequestHandler

Create and register a oneshot request handler.

This is a method for convenience. See expect_request() for documentation.
Parameters

• uri – URI of the request. This must be an absolute path starting with /, a
URIPattern object, or a regular expression compiled by re.compile().

• method – HTTP method of the request. If not specified (or METHOD_ALL
specified), all HTTP requests will match.

• data – payload of the HTTP request. This could be a string (utf-8 encoded by
default, see data_encoding) or a bytes object.

• data_encoding – the encoding used for data parameter if data is a string.
• headers – dictionary of the headers of the request to be matched
• query_string – the http query string, after ?, such as username=user. If

string is specified it will be encoded to bytes with the encode method of the string.
If dict is specified, it will be matched to the key=value pairs specified in the
request. If multiple values specified for a given key, the first value will be used. If
multiple values needed to be handled, use MultiDict object from werkzeug.

• header_value_matcher – HeaderValueMatcher that matches values
of headers.

Returns Created and register RequestHandler.

6 Chapter 1. Example

pytest_httpserver Documentation, Release 0.3.5

expect_ordered_request(uri: Union[str, pytest_httpserver.httpserver.URIPattern,
Pattern[str]], method: str = ’__ALL’, data:
Union[str, bytes, None] = None, data_encoding:
str = ’utf-8’, headers: Optional[Mapping[str,
str]] = None, query_string: Union[None,
pytest_httpserver.httpserver.QueryMatcher, str, bytes,
Mapping[KT, VT_co]] = None, header_value_matcher: Op-
tional[pytest_httpserver.httpserver.HeaderValueMatcher] =
None)→ pytest_httpserver.httpserver.RequestHandler

Create and register a ordered request handler.

This is a method for convenience. See expect_request() for documentation.
Parameters

• uri – URI of the request. This must be an absolute path starting with /, a
URIPattern object, or a regular expression compiled by re.compile().

• method – HTTP method of the request. If not specified (or METHOD_ALL
specified), all HTTP requests will match.

• data – payload of the HTTP request. This could be a string (utf-8 encoded by
default, see data_encoding) or a bytes object.

• data_encoding – the encoding used for data parameter if data is a string.
• headers – dictionary of the headers of the request to be matched
• query_string – the http query string, after ?, such as username=user. If

string is specified it will be encoded to bytes with the encode method of the string.
If dict is specified, it will be matched to the key=value pairs specified in the
request. If multiple values specified for a given key, the first value will be used. If
multiple values needed to be handled, use MultiDict object from werkzeug.

• header_value_matcher – HeaderValueMatcher that matches values
of headers.

Returns Created and register RequestHandler.

expect_request(uri: Union[str, pytest_httpserver.httpserver.URIPattern, Pat-
tern[str]], method: str = ’__ALL’, data: Union[str, bytes,
None] = None, data_encoding: str = ’utf-8’, headers: Op-
tional[Mapping[str, str]] = None, query_string: Union[None,
pytest_httpserver.httpserver.QueryMatcher, str, bytes, Map-
ping[KT, VT_co]] = None, header_value_matcher: Op-
tional[pytest_httpserver.httpserver.HeaderValueMatcher] =
None, handler_type: pytest_httpserver.httpserver.HandlerType
= <HandlerType.PERMANENT: ’permanent’>) →
pytest_httpserver.httpserver.RequestHandler

Create and register a request handler.

If handler_type is HandlerType.PERMANENT a permanent request handler is created. This
handler can be used as many times as the request matches it, but ordered handlers have higher
priority so if there’s one or more ordered handler registered, those must be used first.

If handler_type is HandlerType.ONESHOT a oneshot request handler is created. This handler
can be only used once. Once the server serves a response for this handler, the handler will be
dropped.

If handler_type is HandlerType.ORDERED an ordered request handler is created. Comparing
to oneshot handler, ordered handler also determines the order of the requests to be served. For
example if there are two ordered handlers registered, the first request must hit the first handler,
and the second request must hit the second one, and not vice versa. If one or more ordered
handler defined, those must be exhausted first.

Parameters

1.2. API documentation 7

pytest_httpserver Documentation, Release 0.3.5

• uri – URI of the request. This must be an absolute path starting with /, a
URIPattern object, or a regular expression compiled by re.compile().

• method – HTTP method of the request. If not specified (or METHOD_ALL
specified), all HTTP requests will match.

• data – payload of the HTTP request. This could be a string (utf-8 encoded by
default, see data_encoding) or a bytes object.

• data_encoding – the encoding used for data parameter if data is a string.
• headers – dictionary of the headers of the request to be matched
• query_string – the http query string, after ?, such as username=user. If

string is specified it will be encoded to bytes with the encode method of the string.
If dict is specified, it will be matched to the key=value pairs specified in the
request. If multiple values specified for a given key, the first value will be used. If
multiple values needed to be handled, use MultiDict object from werkzeug.

• header_value_matcher – HeaderValueMatcher that matches values
of headers.

• handler_type – type of handler
Returns Created and register RequestHandler.

format_matchers()→ str
Return a string representation of the matchers

This method returns a human-readable string representation of the matchers registered. You can
observe which requests will be served, etc.

This method is primairly used when reporting errors.

is_running()→ bool
Returns True when the server is running, otherwise False.

respond_nohandler(request: werkzeug.wrappers.request.Request)
Add a ‘no handler’ assertion.

This method is called when the server wasn’t able to find any handler to serve the request. As
the result, there’s an assertion added (which can be raised by check_assertions()).

respond_permanent_failure()
Add a ‘permanent failure’ assertion.

This assertion means that no further requests will be handled. This is the resuld of missing an
ordered matcher.

start()
Start the server in a thread.

This method returns immediately (e.g. does not block), and it’s the caller’s responsibility to
stop the server (by calling stop()) when it is no longer needed).

If the sever is not stopped by the caller and execution reaches the end, the program needs to be
terminated by Ctrl+C or by signal as it will not terminate until the thred is stopped.

If the sever is already running HTTPServerError will be raised. If you are unsure, call
is_running() first.

There’s a context interface of this class which stops the server when the context block ends.

stop()
Stop the running server.

Notifies the server thread about the intention of the stopping, and the thread will terminate itself.
This needs about 0.5 seconds in worst case.

8 Chapter 1. Example

pytest_httpserver Documentation, Release 0.3.5

Only a running server can be stopped. If the sever is not runnig, :py:class‘HTTPServerError‘
will be raised.

thread_target()
This method serves as a thread target when the server is started.

This should not be called directly, but can be overriden to tailor it to your needs.

url_for(suffix: str)
Return an url for a given suffix.

This basically means that it prepends the string http://$HOST:$PORT/ to the suffix pa-
rameter (where $HOST and $PORT are the parameters given to the constructor).

Parameters suffix – the suffix which will be added to the base url. It can start with
/ (slash) or not, the url will be the same.

Returns the full url which refers to the server

wait(raise_assertions: Optional[bool] = None, stop_on_nohandler: Optional[bool] = None,
timeout: Optional[float] = None)

Context manager to wait until the first of following event occurs: all ordered and oneshot han-
dlers were executed, unexpected request was received (if stop_on_nohandler is set to True), or
time was out

Parameters
• raise_assertions – whether raise assertions on unexpected request or time-

out or not
• stop_on_nohandler – whether stop on unexpected request or not
• timeout – time (in seconds) until time is out

Example:

def test_wait(httpserver):
httpserver.expect_oneshot_request('/').respond_with_data('OK')
with httpserver.wait(raise_assertions=False, stop_on_

→˓nohandler=False, timeout=1) as waiting:
requests.get(httpserver.url_for('/'))

`waiting` is :py:class:`Waiting`
assert waiting.result
print('Elapsed time: {} sec'.format(waiting.elapsed_time))

WaitingSettings

class pytest_httpserver.WaitingSettings(raise_assertions: bool = True,
stop_on_nohandler: bool = True,
timeout: float = 5)

Class for providing default settings and storing them in HTTPServer

Parameters

• raise_assertions – whether raise assertions on unexpected request or timeout
or not

• stop_on_nohandler – whether stop on unexpected request or not

• timeout – time (in seconds) until time is out

1.2. API documentation 9

pytest_httpserver Documentation, Release 0.3.5

HeaderValueMatcher

class pytest_httpserver.HeaderValueMatcher(matchers: Optional[Mapping[str,
Callable[[str, str], bool]]] =
None)

Matcher object for the header value of incoming request.

Parameters matchers – mapping from header name to comparator function that accepts
actual and expected header values and return whether they are equal as bool.

RequestHandler

class pytest_httpserver.RequestHandler(matcher:
pytest_httpserver.httpserver.RequestMatcher)

Represents a response function and a RequestHandler object.

This class connects the matcher object with the function responsible for the response.

Parameters matcher – the matcher object

respond(request: werkzeug.wrappers.request.Request) →
werkzeug.wrappers.response.Response

Calls the request handler registered for this object.

If no request handler was specified previously, it raises NoHandlerError exception.
Parameters request – the incoming request object
Returns the response object

respond_with_data(response_data: Union[str, bytes] = ”, status: int = 200, headers:
Optional[Mapping[str, str]] = None, mimetype: Optional[str] =
None, content_type: Optional[str] = None)

Registers a respond handler function which responds raw data.

For detailed description please see the Response object as the parameters are analogue.
Parameters

• response_data – a string or bytes object representing the body of the response
• status – the HTTP status of the response
• headers – the HTTP headers to be sent (excluding the Content-Type header)
• content_type – the content type header to be sent
• mimetype – the mime type of the request

respond_with_handler(func: Callable[[werkzeug.wrappers.request.Request],
werkzeug.wrappers.response.Response])

Registers the specified function as a responder.

The function will receive the request object and must return with the response object.

respond_with_json(response_json, status: int = 200, headers: Optional[Mapping[str,
str]] = None, content_type: str = ’application/json’)

Registers a respond handler function which responds with a serialized JSON object.
Parameters

• response_json – a JSON-serializable python object
• status – the HTTP status of the response
• headers – the HTTP headers to be sent (excluding the Content-Type header)
• content_type – the content type header to be sent

respond_with_response(response: werkzeug.wrappers.response.Response)
Registers a respond handler function which responds the specified response object.

Parameters response – the response object which will be responded

10 Chapter 1. Example

pytest_httpserver Documentation, Release 0.3.5

1.2.2 pytest_httpserver.httpserver

This module contains some internal classes which are normally not instantiated by the user.

class pytest_httpserver.httpserver.RequestMatcher(uri: Union[str,
pytest_httpserver.httpserver.URIPattern,
Pattern[str]], method: str =
’__ALL’, data: Union[str, bytes,
None] = None, data_encoding:
str = ’utf-8’, headers: Op-
tional[Mapping[str, str]] =
None, query_string: Union[None,
pytest_httpserver.httpserver.QueryMatcher,
str, bytes, Mapping[KT, VT_co]] =
None, header_value_matcher: Op-
tional[pytest_httpserver.httpserver.HeaderValueMatcher]
= None)

Matcher object for the incoming request.

It defines various parameters to match the incoming request.

Parameters

• uri – URI of the request. This must be an absolute path starting with /, a URIPattern
object, or a regular expression compiled by re.compile().

• method – HTTP method of the request. If not specified (or METHOD_ALL specified), all
HTTP requests will match.

• data – payload of the HTTP request. This could be a string (utf-8 encoded by default, see
data_encoding) or a bytes object.

• data_encoding – the encoding used for data parameter if data is a string.

• headers – dictionary of the headers of the request to be matched

• query_string – the http query string, after ?, such as username=user. If string
is specified it will be encoded to bytes with the encode method of the string. If dict is
specified, it will be matched to the key=value pairs specified in the request. If multiple
values specified for a given key, the first value will be used. If multiple values needed to be
handled, use MultiDict object from werkzeug.

difference(request: werkzeug.wrappers.request.Request)→ list
Calculates the difference between the matcher and the request.

Returns a list of fields where there’s a difference between the request and the matcher. The returned list
may have zero or more elements, each element is a three-element tuple containing the field name, the
request value, and the matcher value.

If zero-length list is returned, this means that there’s no difference, so the request matches the fields set in
the matcher object.

match(request: werkzeug.wrappers.request.Request)→ bool
Returns whether the request matches the parameters set in the matcher object or not. True value is returned
when it matches, False otherwise.

match_data(request: werkzeug.wrappers.request.Request)→ bool
Matches the data part of the request

Parameters request – the HTTP request

Returns True when the data is matched or no matching is required. False otherwise.

1.2. API documentation 11

pytest_httpserver Documentation, Release 0.3.5

class pytest_httpserver.httpserver.Error
Base class for all exception defined in this package.

class pytest_httpserver.httpserver.NoHandlerError
Raised when a RequestHandler has no registered method to serve the request.

class pytest_httpserver.httpserver.HTTPServerError
Raised when there’s a problem with HTTP server.

class pytest_httpserver.httpserver.RequestHandlerList
Represents a list of RequestHandler objects.

match(request: werkzeug.wrappers.request.Request)→ pytest_httpserver.httpserver.RequestHandler
Returns the first request handler which matches the specified request. Otherwise, it returns None.

1.3 Release Notes

1.3.1 0.3.5

New Features

• Extend URI matching by allowing to specify URIPattern object or a compiled regular expression, which will be
matched against the URI. URIPattern class is defined as abstract in the library so the user need to implement a
new class based on it.

1.3.2 0.3.4

Bug Fixes

• Fix the tests assets created for SSL/TLS tests by extending their expiration time. Also update the Makefile which
can be used to update these assets.

1.3.3 0.3.3

New Features

• Besides bytes and string, dict and MultiDict objects can be specified as query_string. When these objects are
used, the query string gets parsed into a dict (or MultiDict), and comparison is made accordingly. This enables
the developer to ignore the order of the keys in the query_string when expecting a request.

Bug Fixes

• Fixed issue #16 by converting string object passed as query_string to bytes which is the type of the query string
in werkzeug, and also allowing bytes as the parameter.

• Fix release tagging. 0.3.2 was released in a mistake by tagging 3.0.2 to the branch.

Other Notes

• Add more files to source distribution (sdist). It now contains tests, assets, examples and other files.

12 Chapter 1. Example

pytest_httpserver Documentation, Release 0.3.5

1.3.4 0.3.1

New Features

• Add httpserver_listen_address fixture which is used to set up the bind address and port of the server. Setting
bind address and port is possible by overriding this fixture.

1.3.5 0.3.0

New Features

• Support ephemeral port. This can be used by specify 0 as the port number to the HTTPServer instance. In such
case, an unused port will be picked up and the server will start listening on that port. Querying the port attribute
after server start reveals the real port where the server is actually listening.

• Unify request functions of the HTTPServer class to make the API more straightforward to use.

Upgrade Notes

• The default port has been changed to 0, which results that the server will be staring on an ephemeral port.

• The following methods of HTTPServer have been changed in a backward-incompatible way:

– pytest_httpserver.HTTPServer.expect_request() becomes a general function ac-
cepting handler_type parameter so it can create any kind of request handlers

– pytest_httpserver.HTTPServer.expect_oneshot_request() no longer accepts the
ordered parameter, and it creates an unordered oneshot request handler

– pytest_httpserver.HTTPServer.expect_ordered_request() is a new method
craeting an ordered request handler

1.3.6 0.2.2

New Features

• Make it possible to intelligently compare headers. To accomplish that HeaderValueMatcher was added. It
already contains logic to compare unknown headers and authorization headers. Patch by Roman Inflianskas.

1.3.7 0.2.1

Prelude

Minor fixes in setup.py and build environment. No actual code change in library .py files.

1.3.8 0.2

New Features

• When using pytest plugin, specifying the bind address and bind port can also be possible via environment
variables. Setting PYTEST_HTTPSERVER_HOST and PYTEST_HTTPSERVER_PORT will change the bind
host and bind port, respectively.

1.3. Release Notes 13

pytest_httpserver Documentation, Release 0.3.5

• SSL/TLS support added with using the SSL/TLS support provided by werkzeug. This is based on the ssl module
from the standard library.

1.3.9 0.1.1

Prelude

Minor fixes in setup.py and build environment. No actual code change in library .py files.

1.3.10 0.1

Prelude

First release

14 Chapter 1. Example

Python Module Index

p
pytest_httpserver, 5
pytest_httpserver.httpserver, 11

15

pytest_httpserver Documentation, Release 0.3.5

16 Python Module Index

Index

A
add_assertion() (pytest_httpserver.HTTPServer

method), 5
application() (pytest_httpserver.HTTPServer

method), 5

C
check_assertions()

(pytest_httpserver.HTTPServer method),
5

clear() (pytest_httpserver.HTTPServer method), 5
clear_all_handlers()

(pytest_httpserver.HTTPServer method),
5

clear_assertions()
(pytest_httpserver.HTTPServer method),
6

clear_log() (pytest_httpserver.HTTPServer method),
6

create_matcher() (pytest_httpserver.HTTPServer
method), 6

D
difference() (pytest_httpserver.httpserver.RequestMatcher

method), 11
dispatch() (pytest_httpserver.HTTPServer method),

6

E
Error (class in pytest_httpserver.httpserver), 11
expect_oneshot_request()

(pytest_httpserver.HTTPServer method),
6

expect_ordered_request()
(pytest_httpserver.HTTPServer method),
6

expect_request() (pytest_httpserver.HTTPServer
method), 7

F
format_matchers() (pytest_httpserver.HTTPServer

method), 8

H
HeaderValueMatcher (class in pytest_httpserver),

10
HTTPServer (class in pytest_httpserver), 5
HTTPServerError (class in

pytest_httpserver.httpserver), 12

I
is_running() (pytest_httpserver.HTTPServer

method), 8

L
log (pytest_httpserver.HTTPServer attribute), 5

M
match() (pytest_httpserver.httpserver.RequestHandlerList

method), 12
match() (pytest_httpserver.httpserver.RequestMatcher

method), 11
match_data() (pytest_httpserver.httpserver.RequestMatcher

method), 11

N
NoHandlerError (class in

pytest_httpserver.httpserver), 12

P
pytest_httpserver (module), 5
pytest_httpserver.httpserver (module), 11

R
RequestHandler (class in pytest_httpserver), 10
RequestHandlerList (class in

pytest_httpserver.httpserver), 12

17

pytest_httpserver Documentation, Release 0.3.5

RequestMatcher (class in
pytest_httpserver.httpserver), 11

respond() (pytest_httpserver.RequestHandler
method), 10

respond_nohandler()
(pytest_httpserver.HTTPServer method),
8

respond_permanent_failure()
(pytest_httpserver.HTTPServer method),
8

respond_with_data()
(pytest_httpserver.RequestHandler method), 10

respond_with_handler()
(pytest_httpserver.RequestHandler method), 10

respond_with_json()
(pytest_httpserver.RequestHandler method), 10

respond_with_response()
(pytest_httpserver.RequestHandler method), 10

S
start() (pytest_httpserver.HTTPServer method), 8
stop() (pytest_httpserver.HTTPServer method), 8

T
thread_target() (pytest_httpserver.HTTPServer

method), 9

U
url_for() (pytest_httpserver.HTTPServer method), 9

W
wait() (pytest_httpserver.HTTPServer method), 9
WaitingSettings (class in pytest_httpserver), 9

18 Index

	Example
	User’s Guide
	API documentation
	Release Notes

	Python Module Index
	Index

